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Abstract 

 

OPTIMIZATION OF FEATURE SELECTION IN A BRAIN-COMPUTER 

INTERFACE SWITCH BASED ON EVENT-RELATED DESYNCHRONIZATION 

AND SYNCHRONIZATION DETECTED BY EEG 

 

 

By Mason Montgomery, M.S.  

 

 

A Thesis submitted in partial fulfillment of the requirements for the degree of Master in 

Sciences at Virginia Commonwealth University.  

 

Virginia Commonwealth University, 2012  

Major Director: Dr. Ou Bai  

Assistant Professor, Dept. of Biomedical Engineering 

 

There are hundreds of thousands of people who could benefit from a Brain-Computer 

Interface.  However, not all are willing to undergo surgery, so an EEG is the prime 

candidate for use as a BCI.  The features of Event-Related Desynchronization and 

Synchronization could be used for a switch and have been in the past.  A new method of 

feature selection was proposed to optimize classification of active motor movement vs a 

non-active idle state.  The previous method had pre-selected which frequency and 

electrode to use as electrode C3 at the 20Hz bin.  The new method used SPSS statistical 
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software to determine the most significant frequency and electrode combination.This 

improved method found increased accuracy in classifying cases as either active or idle 

states.  Future directions could be using multiple features for classification and BCI 

control, or exploiting the difference between ERD and ERS, though for either of these a 

more advanced algorithm would be required. 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 The Brain Computer Interface 

 

1.1.1 Need for BCIs 

 It is estimated that 30,000 people in America alone have Amyotrophic Lateral 

Sclerosis.  ALS is a common cause of “locked-in syndrome.”  Locked-in syndrome refers 

to the state of a person‟s body becoming immobile but their mind remaining active.  The 

only way such people have been able to communicate in the past is through eye 

movement and blinks, but BCIs could allow them to use more of their brain that has been 

cut-off from the rest of their body.   

 Another group that could benefit from BCIs is amputees.  There are hundreds of 

thousands of amputees in the US who could potentially benefit from a BCI prosthetic.  A 

majority of amputees experience phantom limb pain, but also other sensations because 

parts of their motor cortex are still devoted to the missing area.  That input is looking for 

an output, and a BCI prosthetic could serve as that output. 

 There are two main categories of BCIs: invasive and non-invasive. 
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1.1.2 Invasive BCIs 

 Now there are two main divisions of BCIs, invasive and non-invasive.  Of the 

invasive division, there are two subsections: fully invasive and semi-invasive.  The fully 

invasive section is further divided into single site recording and multiple site recording.  

Semi-invasive recording is called Electrocorticography, where electrodes are placed 

under the skull, but on top of the cortex, not implanted within the cortex. In single site 

recording, one electrode is implanted into the cortex and receives signals from a small 

group of neurons (Evarts et al, 1960).  This kind of interface is simple and easy to 

implement.  However, it suffers from the variability associated with a small sample 

population, because neuron firing patterns vary greatly between neurons and even the 

same neuron can fire differently at different times.  Multiple site recording avoids 

variance of single neurons and temporal variance by getting a larger population to 

average.  Because of this, it has the potential to produce more and cleaner signals for a 

computer to read.  The difficulty with this technique is the requirement of more advanced 

algorithms to make sense of all of the data picked up by the electrodes. 

 Much research has been done on non-human primates and somewhat more limited 

research has been done on humans.  In 2003, an experiment was carried out on three 

rhesus monkeys that had microwire arrays implanted into their cortexes.  The subjects 

had 100 to 700 microwires each in up to five cortical areas.  Up to 250 individual neurons 

were recorded each session (Nicolelis, et al 2003).  This experiment demonstrated the 

ability to obtain neuronal signals in real-time from multi-electrode recordings at multiple 

sites.  
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1.1.3 Non-Invasive BCIs 

 The greatest benefit of non-invasive BCIs is the lack of surgery and the risks 

associated with brain surgery.  The greatest detriment is the imprecision of having to pick 

up relatively faint signals through skin, bone, and everything else that cushions the brain 

from the outside world.  Often a choice has to be made between temporal and spatial 

resolution.  The fMRI offers unaparalleled spatial resolution down to 1mm, but the 

temporal resolution is as high as 1-2s.  This makes it better suited to studying the 

localization of cortical activity than for control of any device.  Electroencephalograms, 

however, have unmatched temporal resolution of ~1ms, but lack spatial resolution greater 

than a centimeter or two at the surface (Pfutscheller et al, 2006).  Fortunately for EEGs, 

most brain activity of interest occurs at or near the outermost layer of the cortex.  This 

leads to a maximum information transfer rate of 25 bits per second (Wolpaw et al, 2002).  

That rate could be sufficient to operate a computer cursor or keystrokes, but not a 

prosthetic limb as complex as a real limb.  Another drawback is that it can take several 

sessions to learn how to use an EEG-based BCI effectively.  Some require the subject to 

find out what works on their own, while others use algorithms that look for and recognize 

common firing patterns. 

 One such pattern is the P300, a potential increase observed 300ms after a stimulus 

presentation.  It has been used to create a letter matrix to allow those who cannot move to 

spell out words at about 2 letters per minute (Nijboer et al, 2003). 

 In the proposed experiment, the common firing patterns that were utilized were 

the Event-Related Desynchronization and Synchronization. 
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1.2 Event-Related Desynchronization and Synchronization (ERD/ERS) 

  

 The natural state of neurons that are not in use is to fire action potentials in 

synchrony.  Up to two seconds before a motor action is initiated, the neurons in use 

desynchronize and this is called an Event-Related Desynchronization.  The ERD lasts 

until one second after the action ceases (Toro et al, 1994).  Following the action, the 

neurons resynchronize, a phenomenon called Event-Related Synchronization.  ERS can 

be observed a few tenths of a second after an ERD ceases.  Because of the nature of 

synchrony and desynchrony, ERD is associated with a relative power drop and ERS with 

a relative power increase in certain frequency bands, especially the Beta Band ~15-30Hz 

(Bai et al. 2005; Pfurtscheller et al 2009; Deeke et al, 1969).  Previous studies have 

proposed using the beta band in the motor area as a control for a BCI (McFarland, 2003).  

These patterns appear both during real and imagined movement (Pfurtscheller and Lopes 

da Silva, 1999).  Because it can appear out of imagined movement it has possible 

applications to locked-in patients and may even be a natural-feeling solution to amputees.  

It is also a very stable feature that exists in most individuals and remains across trials 

(Pfurtscheller and Nueper, 2006). 

 

1.3 Objective 

 

 There already exists a technique to use ERD/ERS signals, however there was no 

method for finding the best signal.  The signal was chosen by educated guess as the 16-

20Hz frequency bin of electrode C3 (Qian et al. 2010, Bai et al. 2008).  The proposed 
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method seeks to improve on this by developing a method of feature selection customized 

to each individual.  A large volume of data is collected with each experiment: 25 

frequency bins over 15 electrodes, ERD and ERS, which make 750 features in all, so it is 

likely that at least one has greater significance than the feature used by the current 

paradigm.  This paper will propose the use of the statistical software SPSS to select the 

most significant features for a BCI switch.  To be successful, the new paradigm will need 

to be able to better discriminate between active and idle states than the current paradigm, 

especially in motor imagery because of its use for those who can no longer execute 

physical movement.  There would still need to be at least two tests for calibration, but the 

analysis should be able to be completed within the same time frame of 3 to 4 hours. 
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CHAPTER 2 

 

METHODS 

 

2.1 Subjects: 

 

 Four healthy volunteers aged twenty to twenty-three (two males, two females) 

participated in this study.  Each subject was tested for handedness by filling out a survey 

asking which hand was dominant in a variety of tasks, and all were found to be right-

handed.  Their scores on the Edinburgh scale ranged from 0.6 to 0.9, where 1 is 

completely right-handed, zero is ambidextrous, and -1 is completely left-handed 

(Oldfield, 1971).  None of them had any prior experience with Brain-Computer Interface.  

The protocol was approved by the Institutional Review Board.  All of the subjects gave 

informed consent. 

 

2.2 Set up: 

 

 Subjects were equipped with an elastic 64-channel Electroencephalography cap 

(Electro-Cap International, Inc.).  Of the available channels, 16 were used, 15 for data 

recording and one for ground: FZ, C3A, CZA, C4A, C5, C3, C1, CZ, C2, C4, C6, C3P, CZP, 
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C4P, and PZ.  FPZ was used for the ground.  The resistance of each was monitored and 

reduced to under five Kilo ohms. 

 In addition to the data-recording electrodes, there was a reference electrode attached 

to the subject‟s ear.  Finally, an electrode was applied to the subject‟s right forearm for the 

purpose of monitoring muscle activity via Electromyography. 

 Once the subject was equipped with the cap, the experimenter sat them down in a 

comfortable chair three to four feet in front of a monitor.  The electrodes were then plugged 

into a Guger Technologies USB Biosignal Amplifier.  The amplifier was already plugged 

into a computer equipped with MATLAB and the BCI2VR Toolbox (Bai et al, 2007).  The 

set up typically took one hour. 

 

2.3 Paradigm design, task, implementation: 

 

 The paradigm for this experiment was similar to an earlier experiment (Qian et al. 

2010).  Each subject was allowed to watch the program run while the researcher 

explained the paradigm.  There were two frequencies of tones, higher-pitch (5000Hz) and 

lower-pitch (2000Hz), each played for 0.05 seconds.  When the higher pitch tone played 

the subject was to move their right hand for 1.5 seconds.  After the duration, the lower 

pitch tone played indicating a 2.5 second rest period.  This task was repeated 8 times in a 

set.  The same method was used to collect data from the idle state.  The same pattern of 

tones played, but the subject was instructed to avoid innervating any muscles if possible.  

In total there were six sets per session: three idle and three active for a total of 48 tasks 

per session.  In each experiment there would be at least two sessions of physical 

movement and two sessions of imaginary movement. 
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 If the researcher observed physical movement on the EMG at incorrect times, 

they informed the subject and asked them to cease movement.  The two particularly 

troublesome movements were movements of the right arm, observed via activity on the 

EMG channel, and movement that affected the head, observed by large shifts in most 

channels as the connection of the tin electrode to the scalp was stressed. 

  

 

2.4 Data acquisition: 

 

 Signals were amplified and digitized at a rate of 256 hertz.  The signals from each 

electrode were divided into 25 bins of 4Hz each.  The first bin was 1-4Hz; the second was 5-

8Hz, etc.  After each high pitch tone, the Event-Related Desynchronization was recorded.  

The ERD was defined as the average power for each frequency from 0.5s to 1.75s after 

the high pitch tone.  The Event-Related Synchronization was recorded in the same 

manner and defined as 2.25s to 3.25s after the initial high pitch tone.   

 Similarly to the previous study, the Welch method was used with FFT length of 

128 for Bin width sampling, segment length 64, 16 for frequency analysis on every slide 

increase, window length of 256 for frequency analysis, 0.5 overlapping rate, and a 

„hamming‟ window (Qian et al, 2010).   
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2.5 Classification: 

 

 The data from the sessions were analyzed off-line using SPSS/PASW 18.  The 

Wilks‟ lambda method for discriminant analysis was used.  Each frequency bin being 

analyzed from each electrode under analysis was set as a separate category.  Using state 

(idle or active) as the grouping variable, the categories were then classified and given an 

„F‟ value.  The „F‟ value is the same as those calculated in a one-way analysis of 

variance, which is also the square of the t value calculated from an independent samples t 

test (George and Mallory, 2011).  The frequency bins with the highest F values were then 

analyzed separately to determine how accurately they could predict idle vs active state 

group membership. 
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Figure 0: Idle state of Subject 1.  Each subject’s active states were compared to their 

correlated idle state in the differentiation process. 
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CHAPTER 3 

 

RESULTS 

 

3.1 Topographical Analysis 

  

 It has been understood since the time of Galan that each hemisphere of the brain 

controls the contralateral side of the body.  As expected, in Figure 1, activity from 

moving the right hand can be observed in the left motor cortex area.  It manifests as a 

power decrease during the motion, then, shortly after the motion, the neurons 

resynchronize and the power greatly increases. 
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Figure 1: Topography plot from subject 2 physical movement 

Each display is a top-down view of the head, with the nose pointed up.  The display 

is read like text, from top left to bottom right.  The time window displayed is the 

beginning of ERD to the end of ERS, so each head is about 0.06s after the previous 

one.  The color represents the relative power, where blue indicates a relative power 

decrease and red indicates a relative power increase. 
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3.2 Time-Frequency Analysis 

  

 Subjects performed a movement task before the imagery task to familiarize them 

with the paradigm, have a reference point for their motor imagery, and for analysis 

comparison.  As expected the subjects performed significantly better at the motor 

movement task than at motor imagery.  Figure 2 shows the best example of any 

performance on physical movement.  There is a clear distinction between the (red) 

synchronization and (blue) desynchronization phases.  The clear activity is in the beta-

band (frequencies between 13-30Hz).  In theory the best channel should have been C3 

because it is situated roughly where the hand of the motor homunculus should be, 

however, this did not always prove to be the case.  In some channels a distinction can 

even be made between the beta and alpha bands.  This is as close to the ideal signal as 

was observed. 

 The imaginary task provided generally worse results than the physical task.  The 

difference could be observed subjectively between the time-frequency plots for each task 

and also empirically through decreased percent correct classification.  On average the 

difference was 5.6 percentage points. 

 A wide variation between subjects can be observed subjectively and objectively.  

Subject 2 had very clear ERD/ERS patterns across a broad band of frequencies in several 

channels and correct classification near 95%.  Subject 1 displayed the ERD/ERS pattern 

in a few channels, though most strongly in C3P and in more narrow frequency bands.  

Their correct classification was 78%.  Subject 3 had a discernable but weak ERD/ERS 
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pattern in a few channels.  It was also unusually-timed and led to a correct classification 

of 60%.  The signals of Subject 4 could be loosely interpreted as a weak ERD/ERS 

pattern in a few channels, but classification was little better than chance at 55%. 
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Figure 2: Time-Frequency plot from subject 2 physical movement 

For comparison.  The x-axis is time in seconds.  The y-axis is frequency in Hertz.  

The color represents the relative power, where blue indicates a relative power 

decrease and red indicates a relative power increase.  ERD can be observed on the 

left, ERS on the right. 
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Figure 3: Time-Frequency plot from subject 1 imaginary movement 

The x-axis is time in seconds.  The y-axis is frequency in Hertz.  The color represents 

the relative power, where blue indicates a relative power decrease and red indicates 

a relative power increase. ERD can be observed on the left, ERS on the right, 

especially in C3P. 
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Figure 4: Time-Frequency plot from subject 2 imaginary movement 

The x-axis is time in seconds.  The y-axis is frequency in Hertz.  The color represents 

the relative power, where blue indicates a relative power decrease and red indicates 

a relative power increase. ERD can be observed on the left, ERS on the right. 
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Figure 5: Time-Frequency plot from subject 3 imaginary movement 

The x-axis is time in seconds.  The y-axis is frequency in Hertz.  The color represents 

the relative power, where blue indicates a relative power decrease and red indicates 

a relative power increase. 
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Figure 6: Time-Frequency plot from subject 4 imaginary movement 

The x-axis is time in seconds.  The y-axis is frequency in Hertz.  The color represents 

the relative power, where blue indicates a relative power decrease and red indicates 

a relative power increase. 
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3.3 Classification 

 

3.3.1 Previous Method 

 The previous method used the ERD signal in channel C3 at 20Hz.  The results of 

using that method are shown in Table 1.  Displayed therein are the F value and accuracy 

of classification using the SPSS discriminant analysis function for both imaginary and 

physical movement.  The F value is the same as those calculated in a one-way analysis of 

variance, which is also the square of the t value calculated from an independent samples t 

test.  Accuracy indicates what percent of idle and active states were correctly classified as 

such. 

 

 

 

Table 1: Accuracy of Classification for ERD/ERS Switch using ERD in C3 with 17-

20Hz Bin 

 
Subject Physical/Imaginary 
Movement 

F Accuracy 

Subject 1 Physical Movement 137.600 89.6 

Subject 1 Motor Imagery 38.187 78.1 

Subject 2 Physical Movement 256.700 94.8 

Subject 2 Motor Imagery 271.372 94.8 

Subject 3 Physical Movement 9.624 54.5 

Subject 3 Motor Imagery 12.009 59.5 

Subject 4 Physical Movement 67.822 70.0 

Subject 4 Motor Imagery .291 54.0 
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3.3.2 New Method 

 Included in the SPSS discriminant analysis were F values for each variable 

entered.  Those were every frequency bin recorded (0Hz to 100Hz) from 5 channels of 

interest (C1, C2, C3, C4, and C3P) including ERD and ERS values.  The most significant 

value was always an ERD.  Full results are shown in Table 2.  It gives the most 

significant channel and frequency combination.  For each variable that was found most 

significant, a single variable discriminant analysis was performed and the accuracy was 

recorded. 

 

 

 

 

 

 

 

 

Table 2: Accuracy of Classification for ERD/ERS Switch Using the Most Significant 

Channel and Frequency Bin 

 

 
Subject Physical/Imaginary 
Movement 

Channel and 
Frequency 

F accuracy 

Subject 1 Physical Movement C3P 16 257.9425 93.8 

Subject 1 Motor Imagery C3P 20 119.6347 87.5 

Subject 2 Physical Movement C3 32 262.219 93.8 

Subject 2 Motor Imagery C3 16 280.319 94.8 

Subject 3 Physical Movement C1 28 162.5426 82.5 

Subject 3 Motor Imagery C3P 8 29.75547 65.5 

Subject 4 Physical Movement C3 16 77.81327 72.5 

Subject 4 Motor Imagery C1 20 6.839754 59.0 
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3.3.3 Comparison 

 Compared to the previous method of using channel C3 at 20Hz to the new method 

of finding the most significant channel and frequency, the new method yielded 

significantly improved results.  The greatest improvement came in the physical 

movement of Subject 3, an astonishing 28% increase from 54% to 82% accuracy.  

Though the physical movement was included mostly for a frame of reference, this shows 

how much of a difference the few centimeters and 8Hz between C3 20Hz and C1 28Hz 

can make.  The greatest improvement in motor imagery came from Subject 1 as a 9% 

improvement from 78% to 87% accuracy.  Put another way, the number of errors was 

reduced by 41%. 

 The only subject to not see improvement was Subject 2, but her accuracy was 

already the highest of all the subjects, and as can be seen in figure 2 and figure 4 her 

signals were by far the clearest.  The decrease seen in her physical movement accuracy is 

likely due to a single extra miscategorization. 

 Though it was never the most significant channel and frequency combination, the 

original assumption of C3 at 20Hz being the most significant was not misguided.  All of 

the most significant frequencies found, 8Hz to 32Hz, fell in the beta band except for 

Subject 3‟s motor imagery, which could be classified as being in the alpha band.  

Likewise, the most significant electrodes were C3, C3P, and C1.  The electrode C3 is 

positioned over the expected position of the hand of the motor homunculus.  C1 should 

be closer to the torso and legs of the motor homunculus, but each person‟s brain is 

configured slightly differently, so finding significance there should not be too surprising.  

The observed significance from C3P can be explained one of two ways: 1. the fit of the 
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cap and the shape of the subject‟s head put C3P over motor cortex and shifted C3 to 

premotor cortex, or 2. C3P was over sensory cortex as it should have been and the area 

was stimulated by increased attention to that area. 

 

 

 

 

 

 

 

Table 3: Percentage Point Improvement of Best Variable over C3 20Hz ERD in 

Offline Analysis 

 
 Subject 1 Subject 2 Subject 3 Subject 4 

Physical Movement 4 -1 28 2.5 

Motor Imagery 9 0 6 5 
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CHAPTER 4 

 

DISCUSSION 

 

 

4.1 Success of Improved Feature Selection 

  

  The goal of the ERD/ERS switch was to create a reliable on/off command using 

only signals detected by an EEG.  A perfect switch would be as functional as a real-world 

switch which, barring mechanical failure, will have 100% accuracy in classification of off 

(idle) and on (active).  The realized accuracy of either method is still not up to that 

standard, and may not be for some time.  However, up to 50% error reduction from the 

first method to the enhanced method is a good start.  This improvement has even been 

achieved without making further computational demands on the device itself, so much 

more improvement is likely to be found in enhanced computational methods. 

 One might notice how much better subjects 1 and 2 were at the task than subjects 

3 and 4.  It might be worth looking into whether females have some natural advantages 

over males in this task as subjects 1 and 2 were both female and subjects 3 and 4 were 

both male.  The best performance of either male was still worse than the worst 

performance of either female.  The sample is far too small to prove anything, but the 

dramatic difference in performance warrants some further investigation. 
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 Another factor whose impact is as yet unknown is the nature of a signal from an 

amputee.  The cortical activity associated with „moving‟ the missing limb may turn out to 

be more similar to the activity associated with real movement than like the motor imagery 

of healthy subjects.  One way to reproduce the effect of being unable to innervate limbs 

in healthy subjects would be the use of localized paralytic agents, however, complications 

associated with this option may make it unfeasible. 

 

4.2 Further Improvements 

 

4.2.1 Multiple Signals 

 One proposal for improving the paradigm is to use multiple signals at once.  

When all of the signals are analyzed offline 100% accuracy can be achieved for every 

subject.  However, this would be very computationally demanding on any device.  

Another, more likely, possibility is that using hundreds of features to differentiate 

between 96 data points resulted in over-fitting of the data.  Using two or more of the most 

significant electrodes could provide a high enough accuracy that averaging only two trials 

would give an acceptable accuracy.  Tables 4 through 7 show the F values of each 

subject‟s frequencies in ERD and ERS at five different electrodes.  In most cases there 

are clusters of significance around certain frequencies in each electrode.  One interesting 

aspect is that the frequencies at the center of these clusters vary across electrodes.  In a 

single subject the most significant frequencies in a given electrode can vary by as much 

as 20Hz. 
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Table 4: F values for Subject 1 at every frequency and electrode 

 ERD ERD ERD ERD ERD ERS ERS ERS ERS ERS 

Hz C3 C1 C2 C4 C3P C3 C1 C2 C4 C3P 

4 28.129 24.240 26.455 13.962 91.008 7.939 15.538 11.965 26.655 43.747 

8 32.843 30.383 27.716 15.116 98.834 10.231 20.027 14.289 28.287 47.673 

12 38.028 39.730 28.782 16.084 106.736 13.194 25.407 16.518 29.020 51.748 

16 40.590 50.847 29.550 16.784 113.071 14.876 30.613 17.791 29.017 53.952 

20 38.187 67.360 29.703 17.558 119.635 13.774 38.169 17.162 26.974 50.555 

24 20.166 68.800 24.060 12.805 107.330 7.919 35.890 10.460 15.116 28.496 

28 4.047 46.497 16.030 1.760 81.822 1.958 17.926 9.970 7.578 10.296 

32 1.891 25.688 11.883 .013 60.618 .008 13.541 9.003 8.579 10.671 

36 .684 10.500 5.531 .188 32.356 .208 6.589 3.523 2.182 13.036 

40 .040 4.186 .358 1.486 11.747 .033 2.693 .447 .239 10.274 

44 .015 2.345 1.026 1.655 6.982 .009 1.132 .003 .093 5.562 

48 .001 1.185 2.117 1.254 4.396 .000 .276 .494 .351 1.285 

52 .306 .583 .775 .297 3.356 .398 .002 2.617 3.775 .481 

56 .676 .717 .387 .009 1.744 2.466 .230 3.878 6.402 .001 

60 .105 1.126 .913 .007 1.668 4.632 .792 2.074 3.994 .195 

64 .002 1.003 2.776 .010 1.285 3.717 .671 .774 2.305 .230 

68 .091 1.023 2.123 .214 .477 .273 .618 .232 2.023 .809 

72 .584 1.005 1.985 .240 .144 .000 2.381 .469 .345 1.332 

76 .016 .235 1.656 .200 .000 1.450 2.942 .006 .454 .657 

80 .312 .078 .817 .028 .027 5.091 2.599 .556 .824 .657 

84 .486 .472 .988 .507 .239 3.676 2.034 .181 .017 .530 

88 .437 .548 4.533 .572 .097 1.879 1.905 .206 .175 .726 

92 2.403 .213 6.578 .072 .137 1.929 2.325 .379 .186 1.367 

96 2.898 .091 3.369 .094 .571 1.188 1.359 .011 .254 2.263 

100 .490 .006 .887 .647 .522 .033 .380 .112 .368 .864 
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Table 5: F values for Subject 2 at every frequency and electrode 

 ERD ERD ERD ERD ERD ERS ERS ERS ERS ERS 

 C3 C1 C2 C4 C3P C3 C1 C2 C4 C3P 

4 207.81 108.10 29.113 57.870 40.471 17.896 10.191 7.483 2.708 6.853 

8 239.65 123.66 36.387 59.829 44.252 16.949 11.499 8.115 2.610 8.345 

12 267.32 136.42 43.601 59.708 48.517 15.334 12.523 8.455 2.361 9.920 

16 280.31 144.77 48.638 58.583 54.063 13.338 11.414 8.531 2.030 11.153 

20 271.37 157.03 53.203 57.900 66.320 9.544 5.490 8.124 1.449 12.219 

24 229.34 167.46 54.797 58.325 86.571 2.378 .075 4.880 .390 9.840 

28 211.26 126.54 48.380 60.808 82.982 .119 9.087 .045 .166 3.768 

32 226.97 88.857 43.655 54.823 78.143 1.828 21.257 .921 1.361 1.100 

36 165.37 70.244 37.328 39.153 78.784 2.119 19.910 1.060 .920 .139 

40 117.91 76.600 34.359 28.288 67.897 .222 6.527 .231 .587 .009 

44 96.213 57.942 20.903 19.904 48.422 .046 3.038 .017 2.169 .005 

48 41.929 35.114 6.405 8.759 25.645 .077 2.088 .002 .617 .090 

52 13.246 17.976 2.086 2.270 12.538 .018 1.397 .437 .001 .000 

56 6.820 4.646 1.247 .113 3.036 .000 1.417 1.688 .056 .409 

60 3.974 1.283 .441 .000 1.088 .101 .724 .697 .060 2.297 

64 .060 1.400 .038 .285 .135 .038 1.489 .277 .039 3.247 

68 1.291 2.332 .181 .001 .574 .871 1.534 .622 1.479 .977 

72 .251 .291 .010 .022 .945 1.281 .375 .366 2.234 .009 

76 .007 .074 .545 .095 .323 1.137 .097 .001 .887 .008 

80 .249 .221 .172 .000 .556 1.588 .086 1.299 .008 .001 

84 .055 .233 1.158 .386 .072 2.106 .072 1.084 1.114 .094 

88 .066 .151 3.329 .221 .302 3.816 .384 .380 1.616 .048 

92 .165 .175 2.731 .028 .015 4.952 .051 3.542 .482 1.670 

96 .000 .320 .570 .243 .293 1.717 .851 4.281 .168 .888 

100 .098 .338 .077 2.768 .225 .362 .005 2.500 .051 .310 
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Table 6: F values for Subject 3 at every frequency and electrode 

 ERD ERD ERD ERD ERD ERS ERS ERS ERS ERS 

 C3 C1 C2 C4 C3P C3 C1 C2 C4 C3P 

4 18.633 12.444 12.151 9.136 28.909 5.691 .033 2.858 7.343 5.769 

8 23.444 16.893 16.742 11.839 29.755 4.723 .114 3.941 7.842 4.564 

12 25.642 23.004 21.733 14.372 27.967 3.203 .506 5.302 7.463 3.080 

16 20.658 24.581 23.627 14.616 24.958 1.636 1.526 5.973 5.885 1.613 

20 12.009 17.014 19.372 11.304 22.894 .501 2.375 4.634 2.712 .696 

24 10.776 8.447 10.093 5.970 17.574 .084 1.998 2.178 .502 1.056 

28 15.845 1.931 5.330 2.626 11.531 .056 .766 1.279 .002 2.788 

32 15.753 .049 6.353 .663 3.578 .222 .052 1.128 .593 5.232 

36 10.365 .183 7.284 .976 .938 .059 .000 1.025 1.011 7.277 

40 7.509 .360 2.445 .891 3.686 .002 .033 .572 1.162 8.514 

44 3.505 .411 .062 .078 8.348 .835 .215 .033 .427 5.110 

48 3.246 .022 .796 1.463 10.293 5.310 .935 .113 .003 2.239 

52 4.194 .631 .696 2.049 12.678 8.391 2.674 .021 .015 2.148 

56 3.398 .735 .301 .461 13.986 6.553 3.413 .051 .001 5.097 

60 2.230 .768 .020 .106 15.309 5.139 2.023 .128 .105 8.811 

64 2.676 .466 .011 .894 15.271 5.217 .043 .318 .277 10.359 

68 2.856 .002 .000 .892 12.015 3.296 .037 .458 .020 7.580 

72 1.060 .320 .520 .000 11.251 2.711 .006 .503 .622 6.848 

76 .287 .678 3.371 1.228 12.040 1.454 .021 .580 1.943 6.430 

80 .368 .166 7.070 1.640 12.728 .511 .037 .028 .587 4.988 

84 .890 .037 6.138 .440 12.699 1.132 .264 .765 .529 3.970 

88 1.656 .046 3.804 .393 12.650 4.148 .000 .329 3.212 3.958 

92 3.411 .354 2.061 .628 13.984 7.249 .356 1.081 3.461 5.434 

96 6.698 2.184 .704 .842 13.453 4.407 1.000 3.993 .797 9.412 

100 8.878 1.514 .605 1.271 10.753 1.927 .352 3.993 .064 13.030 
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Table 7: F values for Subject 4 at every frequency and electrode 

 ERD ERD ERD ERD ERD ERS ERS ERS ERS ERS 

 C3 C1 C2 C4 C3P C3 C1 C2 C4 C3P 

4 3.767 .001 2.892 2.816 .098 1.729 .138 .639 .257 .526 

8 3.229 .175 3.175 2.972 .034 2.108 .000 .606 .641 1.001 

12 2.305 1.031 3.129 2.844 .017 2.476 .251 .456 1.184 1.580 

16 1.405 2.716 2.887 2.465 .015 2.786 .777 .292 1.534 2.186 

20 .291 6.840 3.120 2.060 .000 2.829 .734 .144 1.523 3.174 

24 .605 6.787 3.118 1.909 .077 .850 .016 .014 .640 2.664 

28 .718 2.755 2.485 1.845 .112 .094 .042 .240 .532 1.728 

32 .117 .381 2.792 2.124 .432 .612 .441 2.208 1.989 2.293 

36 1.809 .000 2.261 1.544 1.107 3.133 1.984 4.921 4.165 4.883 

40 .131 .094 .065 .019 .001 1.811 .419 5.424 3.999 8.202 

44 .186 .251 .257 .807 .535 .147 .087 3.695 3.451 4.514 

48 .203 .169 .026 .227 .323 .003 .429 2.607 3.197 1.754 

52 .117 .082 .194 .027 .086 .175 1.087 2.430 3.173 1.376 

56 .230 .306 1.738 1.273 .285 1.147 3.032 2.506 3.165 1.568 

60 .365 1.147 4.495 4.247 3.366 3.125 6.512 2.233 2.621 1.364 

64 .008 .640 5.246 5.921 3.823 4.202 8.661 .758 .858 .389 

68 .037 .385 2.425 3.755 .697 1.222 1.924 .150 .263 .153 

72 .796 1.281 .418 1.104 .017 .002 .007 .544 1.032 .210 

76 2.628 3.216 .045 .004 .137 .100 .058 .504 .961 .008 

80 2.321 2.698 .148 .482 .166 .488 .413 .083 .167 .004 

84 .968 .475 .332 .008 .072 .788 1.188 .106 .145 .022 

88 .228 .034 .171 .038 .299 .001 .312 .718 .689 .003 

92 .017 .259 .249 .126 .326 .265 .050 .861 .785 .022 

96 .188 .247 .780 .385 .458 .251 .234 1.358 1.413 .015 

100 .124 .015 .853 .587 .490 .000 1.335 1.966 2.499 .002 

 

 

 

 

 

 



www.manaraa.com

 30 

 

4.2.2 ERD/ERS Difference 

 Another aspect that can be exploited is the difference between ERD and ERS.  

While each is only so much different from the Idle state, the difference between ERD and 

ERS is equivalent to their combined difference from the Idle state.  If an algorithm was to 

measure the difference between two timings, the measurement should be close to zero in 

the idle state, but the number for the active state would be greater than either the ERD or 

ERS alone.  This is hinted at in the SPSS discriminant analysis.  In the analysis, it not 

only gives significance values to each feature, it also runs a stepwise analysis of which 

feature would add the most significance to the selection process.  When it does this, the 

feature with the highest F value is always the first feature used, however, the feature with 

the second highest F value is not always the second used.  In several of the analyses the 

second or third feature added is an ERS feature.  This implies that, while the ERD is 

almost always the most dominant feature for classification, it is better used in conjunction 

with an ERS feature than with another ERD feature, even if that signal would be more 

significant by itself than the ERS feature by itself. 
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CHAPTER 5 

 

CONCLUSION 

 

 An improved method of feature selection was used on an EEG ERD/ERS 

paradigm for use in a BCI switch.  The previous method preselected the feature while the 

new method proposed to use statistical software to find the most significant feature.  The 

statistically-selected features led to greater accuracy in classification of idle vs active 

states for most subjects.  Future studies can look into the effect of gender on feasibility of 

EEG-based ERD/ERS BCI switches, the use of more advanced software to use multiple 

features in switch operation, and the utilization of the difference between low-power 

ERD and high-power ERS. 

 

 

 

 

 

 

 

 

 



www.manaraa.com

 32 

 

LIST OF REFERENCES 

 

Bai, O., Lin, P., Vorbach, S., Floeter, M. K., Hattori, N., & Hallett, M. (2008). A high 

performance sensorimotor beta rhythm-based brain–computer interface associated with 

human natural motor behavior. Journal of Neural Engineering, 5(1), 24–35. 

doi:10.1088/1741-2560/5/1/003 

Bai, O., Lin, P., Vorbach, S., Li, J., Furlani, S., & Hallett, M. (2007). Exploration of 

computational methods for classification of movement intention during human voluntary 

movement from single trial EEG. Clinical Neurophysiology, 118(12), 2637–2655. 

doi:10.1016/j.clinph.2007.08.025 

Bai, O., Mari, Z., Vorbach, S., & Hallett, M. (2005). Asymmetric spatiotemporal patterns of 

event-related desynchronization preceding voluntary sequential finger movements: a 

high-resolution EEG study. Clinical Neurophysiology, 116(5), 1213–1221. 

doi:10.1016/j.clinph.2005.01.006 

Deecke, L., Scheid, P., & Kornhuber, H. (1969). Distribution of readiness potential, pre-

motion positivity, and motor potential of the human cerebral cortex preceding voluntary 

finger movements. Experimental Brain Research, 7(2), 158–168. 

doi:10.1007/BF00235441 

Evarts, E. V., Fleming, T. C., & Huttenlocher, P. R. (1960). Recovery Cycle of Visual Cortex 

of the Awake and Sleeping Cat. American Journal of Physiology -- Legacy Content, 

199(2), 373–376. 



www.manaraa.com

 33 

McFarland, D. J., Sarnacki, W. A., & Wolpaw, J. R. (2003). Brain–computer interface (BCI) 

operation: optimizing information transfer rates. Biological Psychology, 63(3), 237–251. 

doi:10.1016/S0301-0511(03)00073-5 

Nijboer, F., Sellers, E. W., Mellinger, J., Jordan, M. A., Matuz, T., Furdea, A., Halder, S., et 

al. (2008). A P300-based brain–computer interface for people with amyotrophic lateral 

sclerosis. Clinical Neurophysiology, 119(8), 1909–1916. 

doi:10.1016/j.clinph.2008.03.034 

Nicolelis, M., Chronic, Multisite, Multielectrode Recordings in Macaque Monkeys. 

(2003).Proceedings of the National Academy of Sciences, 100(19), 11041–11046. 

doi:10.1073/pnas.1934665100 

Oldfield, R. C. (1971). The assessment and analysis of handedness: The Edinburgh inventory. 

Neuropsychologia, 9(1), 97–113. doi:10.1016/0028-3932(71)90067-4 

Pfurtscheller, G., & Lopes da Silva, F. H. (1999). Event-related EEG/MEG synchronization 

and desynchronization: basic principles. Clinical Neurophysiology, 110(11), 1842–1857. 

doi:10.1016/S1388-2457(99)00141-8 

Pfurtscheller, G., Muller-Putz, G. R., Schlogl, A., Graimann, B., Scherer, R., Leeb, R., 

Brunner, C., et al. (2006). 15 years of BCI research at graz university of technology: 

current projects. Neural Systems and Rehabilitation Engineering, IEEE Transactions on, 

14(2), 205 –210. doi:10.1109/TNSRE.2006.875528 

Pfurtscheller, G., & Solis-Escalante, T. (2009). Could the beta rebound in the EEG be suitable 

to realize a “brain switch”? Clinical Neurophysiology, 120(1), 24–29. 

doi:10.1016/j.clinph.2008.09.027 



www.manaraa.com

 34 

Qian, K., Nikolov, P., Huang, D., Fei, D.-Y., Chen, X., & Bai, O. (2010). A motor imagery-

based online interactive brain-controlled switch: Paradigm development and preliminary 

test. Clinical Neurophysiology, 121(8), 1304–1313. doi:10.1016/j.clinph.2010.03.001 

Toro, C., Deuschl, G., Thatcher, R., Sato, S., Kufta, C., & Hallett, M. (1994). Event-related 

desynchronization and movement-related cortical potentials on the ECoG and EEG. 

Electroencephalography and Clinical Neurophysiology/Evoked Potentials Section, 93(5), 

380–389. doi:10.1016/0168-5597(94)90126-0 

Wolpaw, J. R., Birbaumer, N., McFarland, D. J., Pfurtscheller, G., & Vaughan, T. M. (2002). 

Brain–computer interfaces for communication and control. Clinical Neurophysiology, 

113(6), 767–791. doi:10.1016/S1388-2457(02)00057-3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



www.manaraa.com

 35 

 

 

 

VITA 

 

 

 Mason Montgomery was born in Richmond, Virginia on July 30, 1987.  He began 

his studies at The College of William and Mary in the fall of 2006.  While there, he 

joined the Psychology labs of Dr. Joshua Burk in 2008 and Dr. Paul Kieffaber in 2010.  

He first worked at VCU in the summer of 2009 under Dr. Vann in the Pharmacology and 

Toxicology department.  In May of 2010 he earned his Bachelor of Science degree.  That 

fall he began attending Virginia Commonwealth University to earn his Master of Science 

degree.  Even before he officially began at VCU he began researching in Dr Ou Bai‟s lab 

on Brain-Comupter Interfaces.  He continues to pursue the completion of the Master‟s 

degree. 


	OPTIMIZATION OF FEATURE SELECTION IN A BRAIN-COMPUTER INTERFACE SWITCH BASED ON EVENT-RELATED DESYNCHRONIZATION AND SYNCHRONIZATION DETECTED BY EEG
	Downloaded from

	/var/tmp/StampPDF/NIsnlKq0_w/tmp.1404866539.pdf.rb9TJ

